Biomass Burning

Major Needs/Interests:

Identification

Variation in composition

Variation in downwind composition -> Ozone

Long term transformation and effects in receptor regions (maturing)

Altitude of injection

Quantitative emission estimates

Large scale impact: requires large-scale models

People:

Solene Turquety, Chieko Kittaka, Juying Warner, Alan Kwan, Stephanie Vay, David McCabe, John Hair, Alistair Lewis, Nicola Blake, Lenny Pfister, Gao Chen, Peter Colarco, Carolyn Butler, ...

Characterization of biomass burning plumes

Alaska/Yukon, Arizona, Washington, British Columbia

(1) Identification:

DC-8: UCI HCs, CN compounds, K, C₂O₄, absorption/scattering, DIAL aerosol size and depolarization, absence of industrial tracers --> coordinate with John Merrill's characterization)

Other platforms: J31, P3, BAe-146, Falcon

Ground: Wisconsin lidar, FTS CO, CO2, CH4 (Wennberg), Maryland lidar, Huntsville lidar?

(2) Composition of plumes (Identification-> noted variety). Low-O₃ plumes, Low-CO₂ plumes (!) Effects of cloud processing?

Email list: Gao Chen/Carolyn Butler will host an email list:

- (a) initial focus: identifying a <u>list of major and "interesting" plumes</u> by composition, both DC-8 in situ and remote (DIAL/MISR)
- (b) composition at sampling as a result of photochemical processing

Quantitative Emission Estimates

Gabriele Pfister: Inverse Modeling MOPITT-MOZART

- GRL paper: Constraints on emissions for the Alaskan wildfires 2004 ...
- Daily emissions available to ICARTT

Solene Turquety: Bottom-up, Satellite constraint, Injection height sensitivity

- Paper: Using satellite observations to constrain the daily N. American ...
- Daily emissions available to ICARTT
- S. Turquety/C. Kittaka) GEOS-Chem/RAQMS paper on injection heights, comparing variational and cloud top methods

Nature of fuel, nature of emissions as estimated from the ground Non-INTEX groups (Turquety will be liason, Amber Soja (LaRC))

Transport and Evolution of Plumes

Peter Collarco: Back and Forward Trajectory and RDF methods for plume origin and age Collaboration with RAQMS group on "pseudo-layering"

Photochemistry group/R.Hudman et al: ozone/non-ozone production in plume/ PAN decomposition ...?

Long-term transformations in character, recycling, effects of aerosol surfaces, effects of clouds, PAN, aerosol-processed species

NOAA studies - M. Trainer, et al.

- Low enhancement in P-3 study area: dilution or different chemistry for O3 production
- Ozone production at plume edges and with plume mixing

Impacts of biomass burning

- C. Kittaka: Transport of aerosol and impacts on e.g., PM 2.5 and similar air quality indices (RAQMS)
- G. Carmichael: Secondary organics from burning?

Links to Climate

S. Vay: Correlates of CO2, variation, connection to interpretation remote sensing (OCO)

Aerosol-radiation impacts (P. Russell, Clarke)

(Various Authors, TBD) Broader Impact: What is CO effect of burning? O₃ effect of burning?

Papers

Biomass burning in context of other papers:

- Clarke: Pollution and biomass burning aerosol over N. America
- Blake ?
- Browell?
- Kahn?